Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments.

نویسندگان

  • Kevin McClay
  • Corinne Boss
  • Ivan Keresztes
  • Robert J Steffan
چکیده

Broad-substrate-range monooygenase enzymes, including toluene-4-monooxygenase (T4MO), can catalyze the oxidation of indole. The indole oxidation products can then condense to form the industrially important dye indigo. Site-directed mutagenesis of T4MO resulted in the creation of T4MO isoforms with altered pigment production phenotypes. High-pressure liquid chromatography, thin-layer chromatography, and nuclear magnetic resonance analysis of the indole oxidation products generated by the mutant T4MO isoforms revealed that the phenotypic differences were primarily due to changes in the regiospecificity of indole oxidation. Most of the mutations described in this study changed the ratio of the primary indole oxidation products formed (indoxyl, 2-oxindole, and isatin), but some mutations, particularly those involving amino acid G103 of tmoA, allowed for the formation of additional products, including 7-hydroxyindole and novel indigoid pigments. For example, mutant G103L converted 17% of added indole to 7-hydroxyindole and 29% to indigoid pigments including indigo and indirubin and two other structurally related pigments. The double mutant G103L:A107G converted 47% of indole to 7-hydroxyindole, but no detectable indigoid pigments were formed, similar to the product distribution observed with the toluene-2-monooxygenase (T2MO) of Burkholderia cepacia G4. These results demonstrate that modification of the tmoA active site can change the products produced by the enzyme and lead to the production of novel pigments and other indole oxidation products with potential commercial and medicinal utility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for oxidizing nitrobenzene to 3-nitrocatechol, 4-nitrocatechol, and nitrohydroquinone.

Toluene-o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 was found to oxidize nitrobenzene (NB) to form m-nitrophenol (m-NP, 72%) and p-NP (28%) with an initial rate of 0.098 and 0.031 nmol/(min mg protein), respectively. It was also discovered that wild-type ToMO forms 4-nitrocatechol (4-NC) from m-NP and p-NP with an initial rate of 0.15 and 0.0082 nmol/(min mg protein), respective...

متن کامل

Protein engineering of toluene 4-monooxygenase of Pseudomonas mendocina KR1 for synthesizing 4-nitrocatechol from nitrobenzene.

After discovering that toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 oxidizes nitrobenzene to 4-nitrocatechol, albeit at a very low rate, this reaction was improved using directed evolution and saturation mutagenesis. Screening 550 colonies from a random mutagenesis library generated by error-prone PCR of tmoAB using Escherichia coli TG1/pBS(Kan)T4MO on agar plates containing nitr...

متن کامل

Tailoring Toluene para-Monooxygenase of Ralstonia pickettii PKO1 for Regiospecific Oxidation of Aromatics Using Active Site Engineering

for AICHE 2004 [15C12] Advances in Biocatalysis and Protein Engineering Tailoring Toluene para-Monooxygenase of Ralstonia pickettii PKO1 for Regiospecific Oxidation of Aromatics Using Active Site Engineering A. Fishman, Y. Tao, W. E. Bentley, and T. K. Wood University of Connecticut, Storrs, CT University of Maryland, College Park, MD Oxygenases are promising biocatalysts for performing selecti...

متن کامل

The role of substrate binding pocket residues phenylalanine 176 and phenylalanine 196 on Pseudomonas sp. OX1 toluene o-xylene monooxygenase activity and regiospecificity.

Saturation mutagenesis was used to generate eleven substitutions of toluene-o-xylene monooxygenase (ToMO) at alpha subunit (TouA) positions F176 and F196 among which nine were novel: F176H, F176N, F176S, F176T, F196A, F196L, F196T, F196Y, F196H, F196I, and F196V. By testing the substrates phenol, toluene, and naphthalene, these positions were found to influence ToMO oxidation activity and regio...

متن کامل

Layered double hydroxides: Novel nanocatalysts for combustion of gaseous toluene from polluted air

The catalytic performance of Ni-Al, Mg-Al, and Co-Ni LDHs as novel nanocatalysts was evaluated in the oxidation of toluene. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The XRD and FTIR approved the structure and functional groups of the LDH, respectively. Also, the presence of cations with dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 71 9  شماره 

صفحات  -

تاریخ انتشار 2005